PGR21.com
- 자유 주제로 사용할 수 있는 게시판입니다.
- 토론 게시판의 용도를 겸합니다.
Date 2025/01/01 15:53:22
Name 계층방정
Link #1 https://blog.naver.com/lwk1988/223711543047
Subject [일반] [서평]《오일러가 사랑한 수 e》 - 역사를 통해 수학 상수 e를 찾다

《사인 코사인의 즐거움》을 쓴 엘리 마오가 쓴 또다른 책, 《오일러가 사랑한 수 e》(원제 e: The Story of a Number)입니다. 경문수학산책 16권이기도 합니다. 제가 가지고 있는 책은 2005년에 나온 것으로, 절판된 《사인 코사인의 즐거움》과는 달리 이 책은 2020년에 다시 발간이 되어 현재까지도 판매되고 있습니다. 원서는 무려 1993년에 나왔기에, 아직 페르마의 마지막 정리도 증명되지 않았다고 나옵니다.

 VFoUDQpCCMU6jeVrAb1NWzkjqhA           

2005년 발간된 《오일러가 사랑한 수 e》

책 제목에서 나오는 수 e는 자연로그의 밑 2.71828…으로, 원주율 π=3.14159…만큼 유명하지는 않으나 수학적 의의는 결코 그에 뒤처지지 않을 것입니다. 그러나 π가 원이라는 고대부터 사람들의 관심을 끈 도형에서 나온 것에 비해, e는 사람들을 수포자로 만드는 미적분학과 관련된 수이기 때문에 대중들에게 그만큼의 주목은 받지 못하고 있습니다. 글쓴이도 머릿말에서 “π에 관한 책 중에서 베크만의 π의 역사보다 더 좋은 것은 없을 것이다. …(중략)… 내가 알기로는, 베크만의 책과 견줄 만한 e의 역사에 관한 책은 아직까지 출판되지 않았다.”라며 e의 역사를 조명한 책이 거의 없음을 피력했습니다.

이 책은 바로 이런 수 e의 역사를 다루는 책입니다.

e는 미적분학에서 중요한 수입니다. 그러나 e의 발견은 아이작 뉴턴과 고트프리트 라이프니츠가 미적분학의 기본정리를 찾아내기 한참 전의 사건으로 보이고, 그 시작도 분명하지 않습니다. 책의 전반부는 존 네이피어와 그가 발견한 네이피어 로그부터 이야기를 시작해 원리합계, 반비례 그래프로도 유명한 쌍곡선 등 e와 관련이 있는 여러 가지 개념들을 소개하는데, 이는 그만큼 e와 뗄레야 뗄 수 없는 극한과 미적분학이 뉴턴과 라이프니츠라는 두 영웅이 오롯이 세운 업적이 아니라 수많은 사람들의 기여를 통해 발전해 왔다는 사실을 웅변합니다.

잭의 후반부에서는 레온하르트 오일러가 이 수에 e라는 기호를 붙여줘, 오롯이 e만의 역사를 다루게 됩니다. 오일러 이전은 e의 선사시대, 이후는 e의 역사시대라고 할 수 있겠습니다. e가 밑인 자연로그, e의 거듭제곱인 지수함수라는 가장 기초적인 e의 응용부터 시작해, 어떤 변형에도 끄떡없는 신비로운 로그 소용돌이, 두 줄을 늘어뜨린 모양을 나타내는 현수선과 쌍곡 함수, 허수와 복소 지수함수 등 e가 들어가는 다양한 수학적 대상들을 소개합니다. 마지막으로는 e라는 수 자체를 조명해, 이 수가 어떤 종류의 수에 속하는지를 탐구합니다.

15장에 이르는 e의 역사 사이사이에, 가볍게 읽을 수 있는 지식들이 조금씩 들어 있습니다. 이 부분도 e와 관련이 있기 때문에 본문에서 얻은 지식을 조금 더 깊이 파고들거나 사소한 흥밋거리를 더한다고 생각하고 읽으면 좋겠습니다.

부록에서는 네이피어 로그의 초기 정의 등, 그냥 넘어가기엔 중요하지만 일일이 증명하기엔 책의 내용을 너무 부담스럽게 할 수 있는 부분들을 짚어줍니다.

원주율 π와는 달리 우리 주변에서 잘 드러나지 않는 무리수인 e를 다루기 때문에, 어떻게 e에 다가가야 하는지가 중요합니다. 이 책은 역사적인, 간접적인 방식으로 e에 다가갑니다. 따라서 e 자체에 관심이 있는 사람을 대상으로 하기보다는, 수학에 관심이 있는 사람에게 e를 알려주는 책으로 보입니다. 글쓴이는 머릿말에서 수학사를 내용의 중간에 끼워 넣어 수학을 신성한 것으로 여기고 거리감을 느끼는 사람들에게서 그런 거리감을 지워 주고자 한다고 했습니다. 실제로 책에서는 수학자들의 이야기를 많이 넣어서, 수학을 연구하는 사람도 인간적이라는 느낌을 주고자 한다는 의도가 보입니다. 이는 《사인 코사인의 법칙》과도 비슷합니다.

e는 기하학적으로도 나타낼 수 있지만, 극한과 미적분학에서 나오는 수라는 점에서는 함수와 식을 다루는 대수학과 해석학이 더 많이 필요합니다. 그리고 이 책은 이를 설명할 때 수식보다는 말과 이야기로 설명하려는 편이라고 느꼈습니다. 글쓴이가 같은 《사인 코사인의 법칙》은 그림을 그려서 하는 기하학적 증명이 많다 보니 오히려 더 어렵게 느꼈습니다. e의 역사를 통해 e를 사람들이 발견한 경로를 알려주는 설명은 수식보다는 이야기를 많이 들려줄 수 있다는 점에서 책을 더 쉽게 만들어 주는 것 같습니다.

e에 있는 매력은 무엇일까요? 제가 고등학생 때 이 책을 처음 읽고는, 전혀 상관 없어 보이는 수학 상수들인 e, π, i, 1, 0을 하나로 이어주는 다음 식이 강렬하게 남았습니다.

e^(πi)+1=0

그러나 지금은 같은 수식이라도, 다음과 같이 재배열하는 것이 더 좋아 보입니다.

e^(πi)=−1

이 식은 양변을 제곱하면 실수 범위에서는 무한정 증가하는 것처럼 보이는 지수함수에 허수 주기인 2πi가 있다는 점을 보여줍니다. e, π, i, -1만으로 지수함수의 주기성을 보여줄 수 있다는 점이, 수학적으로는 더 가치 있는 식이 아닐까 합니다.

재미있는 것은 이 식은 허수의 허수 제곱도 가능하게 해 준다는 것입니다. 이는 “상상이 현실로”라는 14장의 의의기도 합니다.

 i^i=e^(i ln i)=e^(i(πi/2 + 2nπi))=e^(−π/2−2nπ)

ln i = πi/2 + 2nπi인 이유는 e를 πi/2제곱하면 -1이 되는 것과 지수함수의 주기 2πi 때문입니다. 이를 적용한 결과, i의 i제곱은 한 가지의 값이 아닌 무한히 많은 실수가 되었습니다. 허수는 상상의 수라는 의미가 있으므로, “상상이 현실로” 된 것이지요.

π는 소수점 밑으로 무한히 많은 수가 아무 규칙도 없이 나타나는 무리수입니다. 그러나 이 소수점 밑의 숫자들을 최대한 많이 외우려는 사람들의 열정을 꺾지는 못했습니다. 글쓴이는 이를 광기라고 표현했지만, 이런 비이성적인 열광이 e에 나타나지 않는다는 것은 오히려 e에게는 안타까운 일일 것 같습니다. 사람이 어떤 대상에 느끼는 사랑과 열정에는 비합리성도 어느 정도 섞여야 하는 것 같습니다.

그러나 이것이 e에게는 더 어울릴지도 모릅니다. 숨어 있는 e를 드러내는 데에는, 직관보다는 숙고가 더 알맞으니까요.

변화율이 자기 자신과 같은 함수의 밑, 쌍곡선 함수의 면적을 나타내는 수, 상상을 현실로 만드는 수, 여러 가지 특징이 있는 e의 다양한 면모를 접할 수 있는 이 책을 통해 e의 매력을 조금 더 알아갈 수 있는 기회가 되길 바랍니다.


통합규정 1.3 이용안내 인용

"Pgr은 '명문화된 삭제규정'이 반드시 필요하지 않은 분을 환영합니다.
법 없이도 사는 사람, 남에게 상처를 주지 않으면서 같이 이야기 나눌 수 있는 분이면 좋겠습니다."
전기쥐
25/01/01 16:02
수정 아이콘
미적분할때 필요한 중요한 수이죠.
계층방정
25/01/05 09:44
수정 아이콘
이 특이한 수가 미적분학에서 빠질 수 없는 수라는 점이 신기합니다.
시린비
25/01/01 16:11
수정 아이콘
아 이거 만화책 QED에서 본 수~
이디어트
25/01/01 16:34
수정 아이콘
이 책 추천드립니다
이 책 읽고나서 수학이라는 학문을 대하는 제 자세가 달라졌습니다. 문제는 대4 여름에 읽어서 학점에 영향을 끼치지 못 했다는게..ㅠ
계층방정
25/01/05 09:46
수정 아이콘
특히 수학 같이 어렵고 사람들이 거리감을 느끼는 분야에서 이렇게 좋은 책을 만날 수 있다는 것이 감사합니다. 저도 이 책을 감명 깊게 읽었어요.
아빠는외계인
25/01/01 17:08
수정 아이콘
허수가 상상의 수를 뜻한다는건 이름에서 오는 착각인것 같아요. 그렇게 따지면 음수도 상상의 수라고 할수 있지요. 실제와 상상이 구분되어있고 상상의 세계를 허수가 상징하는것이 아니라, 사칙연산을 편리하게 적용하도록 수의 체계를 확장해나가다보니 제곱해서 음수가 되는 수를 정의하는것이 필요했고 그 과정에서 나온 것이 i일 뿐입니다. 양수만 있는 수 체계보다 음수도 있는 수 체계가 더 폭넓은 상황을 기술할수 있고 분배법칙 결합법칙같은 법칙이 예외가 없이 간단하게 되는것처럼, 허수가 없는 체계보다 허수가 있는 체계가 곱하기로 회전변환을 표현할수 있는 등 더 폭넓은 상황을 기술할수 있고 대수학의 기본정리(대충 n차방정식은 중복된것 포함해서 n개의 근을 갖는다)가 예외없이 간단하게 변화하게 돼요
화재안전기준
25/01/01 17:29
수정 아이콘
세상에서 젤 아름다운(?)방정식 
오일러 방정식

e, π, i, 1, 0​ 이 기본적인 수로 표현한 방정식

e^(iπ)+1=0​

허수가 거듭제곱이라는게 말이 됨?
개념파악 쉽지 않아요 흐흐
25/01/01 19:14
수정 아이콘
(수정됨) 초월수2개:자연로그의 밑, 원주율, 그리고 허수, 그리고 중요한 연산 2개의 항등원.
진짜 중요한것들로만 등식이 만들어진다는게.. 그 등식을 만드는데 덧셈, 곱셈, 지수승까지 한번씩 쓰이는...
이게 말이되나 싶은 크크크
25/01/01 21:05
수정 아이콘
완전 이해했어!
25/01/02 09:38
수정 아이콘
오일러가 사랑한 수 e
홍진호가 사랑한 수 2

오일러가 사랑한 수 e
홍진호가 사랑한 수 2
계층방정
25/01/05 09:46
수정 아이콘
아니 여기서 홍진호가!
아니 여기서 홍진호가!
안군시대
25/01/02 14:04
수정 아이콘
e^n을 미분하면 자기자신이 되는 수.
여기서부터 굉장히 신비로운 숫자죠.
계층방정
25/01/05 09:48
수정 아이콘
e의 정의 중 하나가 n이 무한대로 갈 때 (1+1/n)^n의 극한인데, 이 별 의미 없는 말장난 갈은 수가 바로 e^n을 미분하면 자기 자신이 되는, 곧 변화율이 자기 자신이라는 조건을 만족한다는 게 신비합니다.
목록 삭게로! 맨위로
번호 제목 이름 날짜 조회 추천
103402 [정치] K-패스가 너프먹었습니다. [19] BitSae9098 25/01/03 9098 0
103401 [일반] 섀넌의 척수 : 정보이론과 인공지능 [7] 번개맞은씨앗2578 25/01/03 2578 2
103400 [일반] 소리로 찾아가는 한자 64. 재주 예(埶)에서 파생된 한자들 [4] 계층방정1402 25/01/03 1402 2
103399 [정치] 국힘 소장파 김용태도? “계엄 배경된 선관위 의혹 공개 논의해야” [70] 카린6962 25/01/03 6962 0
103397 [정치] 김흥국 "윤석열 지키기, 힘내서 뭉치자" [96] 어강됴리14433 25/01/02 14433 0
103396 [정치] 국힘 김민전 “가는 곳마다 중국인들이 탄핵 찬성…이게 본질” [67] Nerion12084 25/01/02 12084 0
103395 [일반] 무기력과 무감각했던 휴일의 개인적 단상. [6] aDayInTheLife3533 25/01/02 3533 11
103394 [정치] 우리나라 정치가 덜 극단적으로 변할수 있을까요? [56] 김은동6524 25/01/02 6524 0
103393 [일반] 용산역사박물관의 "접속, 용산전자상가" 특별전을 보고 왔습니다. [14] 及時雨3924 25/01/02 3924 4
103392 [일반] 새해 첫날 새옷을 입어본 결과 [24] LA이글스3926 25/01/02 3926 2
103391 [정치] 與 법사위원들 “尹 체포 영장, 삼권분립에 위배 원천 무효” [52] 철판닭갈비10401 25/01/02 10401 0
103390 [정치] 국회 소추인단, 편지 헌재에 제출하기로(수정) [18] 빅프리즈7456 25/01/02 7456 0
103389 [일반] 아니 시내 한복판에서 170을 밟으시면.. [47] Lord Be Goja8955 25/01/02 8955 7
103388 [일반] 재즈피아노를 1년 동안 / 하루 1시간씩 연습했을 때의 결과물 [15] 79년생4425 25/01/02 4425 7
103387 [일반] 오래만의 독서의 당혹스러움-한국 인터넷 밈의 계보학을 읽고 [5] ekejrhw345744 25/01/02 5744 5
103386 [정치]  현행범으로 체포하겠다 [78] 키르히아이스15452 25/01/02 15452 0
103385 [정치] 윤석열 "끝까지 싸울것", 지지자들에게 신년메시지 [148] 어강됴리15878 25/01/01 15878 0
103384 [일반] 해외 여행지에서 중국인 만났던 기억 [29] 럭키비키잖앙6684 25/01/01 6684 0
103383 [정치] 대한민국에서, OO할 권리 [15] 니드호그8143 25/01/01 8143 0
103382 [일반] [서평]《오일러가 사랑한 수 e》 - 역사를 통해 수학 상수 e를 찾다 [13] 계층방정3042 25/01/01 3042 5
103381 [일반] [2024년 결산] 40살 다 되어서 첫 취업했습니다. [78] 삭제됨11149 25/01/01 11149 97
103380 [정치] 헌법재판관 2명 임명에 반발해서 사표를 내는 정부 인사들 [92] 매번같은15416 25/01/01 15416 0
103379 [정치] 오늘의 여론조사들 [71] 감모여재9739 25/01/01 9739 0
목록 이전 다음
댓글

+ : 최근 1시간내에 달린 댓글
+ : 최근 2시간내에 달린 댓글
맨 위로